
Introduction
Sheep and Shepherd is an activity developed for
CSE's Bible memorization program, a suite of
activities and tools to help users memorize Bible
verses. Our goal was to make memorizing fun by
turning a quiz into a game. It needed to be cute,
interactive, dynamic, and fun. 

We were heavily inspired by Snake and by
physics simulations. In the final game, as the
player collects sheep, they form a line 
and follow the shepherd. 

Design & Tech
The memorization project will be web-based, so
we built Sheep and Shepherd with standard web
technologies for modern browsers. All of the
game logic is done in JavaScript, and the UI
animations were done with pure CSS. 

We used Three.js to render and manage the 3D
world in-browser. Three.js is not a full game
engine, so while it did a lot of heavy lifting, we
still needed to build most of the "engine"
ourselves out of Three.js components and
standard JavaScript. 

We also used Brill to pick believable distraction
words, Bolls.life to get Bible verses, Node and
Vite for development, and Blender
 and Procreate to make most 
of the game assets. 

Future Work

Learning
Developing Sheep and Shepherd taught us a lot
about working as a team. We leveraged Git and
Gitlab to build the final project piece by piece.
We did stand-ups and demos with the other
groups.  We got users to test our designs and
break our assumptions. And ultimately we built
an activity that met our goals at the start of the
project: a cute game that makes quizzing
interesting and rewarding. 

Us

Sheep & Shepherd
Quiz your scripture memory by finding lost sheep

Tools

The game is very static when the shepherd
stands still. Extra animation would make the
game more lively. 

The sheep following the shepherd usually get
stuck in the center of the play space. This could
be fixed with more sophisticated following logic. 

While the game is designed to be an activity
within a larger project, currently it’s stand-alone.
It needs to be integrated into the larger project. 

Challenges
Exporting assets from Blender to Three.js was usually a simple
process, but the grass had multiple issues and went through
multiple iterations to get right. 

JS likes working with events and asynchronous promises, but we
needed it to use loops and stay in sync. 

Mobile browsers tend to squish and stretch when the user interacts
with a website. In addition to regular browser compatibility, we
needed to fight against these behaviors. 

Hanwen Luan
Icebear-M

Charlie Mikels
charliemikels


